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Abstract
The integrable chain of RII type by Spiridonov–Zhedanov is studied by
using the bilinear method. Bilinear equations of the system are derived by
applying appropriate-dependent variable transformations. A particular solution
on a semi-infinite lattice is explicitly given in terms of the Casorati-type
determinants. It is shown that the RII chain and the Toda-type integrable
systems are connected by Bäcklund transformations.

PACS numbers: 02.30.Ik, 02.30.Gp, 05.45.Yv

1. Introduction

A class of nonlinear integrable systems are closely related to orthogonal and biorthogonal
polynomials. It is well known that the Toda lattice can be derived from prescribing a spectral
transformation on orthogonal polynomials. The relativistic Toda lattice is another important
example, which is related to Laurent biorthogonal polynomials [4]. Such relationships between
integrable systems and orthogonal, biorthogonal polynomials are now well developed based
on the soliton theory.

Recently, the biorthogonal rational functions of RI and RII type were introduced by
Ismail and Masson [3] in relation to the multi-point Padé approximation. These biorthogonal
rational functions can be regarded as generalizations of orthogonal polynomials and Laurent
biorthogonal polynomials [15]. Spiridonov and Zhedanov [11, 12] studied a spectral
transformation for the RII rational functions and derived a discrete integrable system, the
RII chain. However, there are few analyses for the RII chain from the viewpoint of the
integrable systems. Many fundamental properties as an integrable system are still missing
and the classification of the RII chain is not known. An interesting feature of the RII chain
is that it is the non-autonomous system: the RII chain has three arbitrary parameters. It is
also expected that the study of the system will reveal a feature specific to non-autonomous
integrable systems. Hirota’s bilinear formalism is one of the effective methods to clarify
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algebraic structures of integrable systems (cf [1, 2, 8]). By this method, integrable systems
are transformed to bilinear equations of τ functions. For the solutions, the τ functions are
expressed as determinants whose elements satisfy linear relations and the bilinear equations
are reduced to identities of determinants. The τ functions reveal an underlying algebraic
structures of the system and let us know relations with other integrable systems. In this sense,
τ function is one of the most fundamental objects in the studies on integrable systems and we
can directly approach them through the bilinear method. In this paper we study the RII chain
using the bilinear method.

The aim of this paper is to derive bilinear equations of the RII chain and to clarify a
determinant structure of a particular solution on a semi-infinite lattice. To be more precise, we
transform the RII chain to bilinear equations and construct a particular solution. A structure
of the solution gives us an information about Bäcklund transformations which the RII chain
admits. Then we show that the RII chain and the Toda-type integrable systems are connected
by the Bäcklund transformations.

This paper is organized as follows. In section 2, we review how the RII chain is derived
from the RII rational functions. In section 3, we derive bilinear equations of the RII chain
and show that a particular solution on a semi-infinite lattice is given in terms of Casorati-type
determinants. In section 4, we give Bäcklund transformations for the RII chain and clarify a
relationship among the RII chain and non-autonomous Toda-type integrable systems induced
by the Bäcklund transformations. Section 5 is devoted to concluding remarks.

2. Derivation of the RII chain

In this section we give a brief review of the RII chain from the RII rational functions. Consider
polynomials Pn(x) generated by the recurrence relation

Pn+1(x) + (unx + vn)Pn(x) + wn(x − αn)(x − βn−1)Pn−1(x) = 0, n = 0, 1, . . . (1)

with the initial conditions

P−1(x) = 0, P0(x) = 1, (2)

where un, vn and wn are some constants. The RII rational functions Rn(x) are defined as

Rn(x) = Pn(x)∏n
i=1(x − αi)

, n = 1, 2, . . . , R−1(x) = 0, R0(x) = 1 (3)

under the assumptions

wn �= 0, Pn(αn) �= 0, n = 1, 2, . . . . (4)

These functions satisfy the recurrence relation

(x − αn+1)Rn+1(x) + (unx + vn)Rn(x) + wn(x − βn−1)Rn−1(x) = 0, n = 0, 1, . . . (5)

with the same initial conditions

R−1(x) = 0, R0(x) = 1. (6)

Ismail and Masson [3] established the orthogonality relation for the RII rational
functions: there exists a linear functional L on the space of rational functions 1

/∏k
i=1

(x − αi)
∏l

i=1(x − βi), k, l = 0, 1, . . . , such that the orthogonality relation

L

[
Rn(x)∏n−1

i=1 (x − βi)
xm

]
= 0, m = 0, 1, . . . , n − 1 (7)
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holds. A transformation for the RII rational functions is given by

R̃n(x) = x − α1

x − λ
(AnRn+1(x) + BnRn(x)) , (8)

where An and Bn are some constants satisfying the relation

AnRn+1(λ) + BnRn(λ) = 0. (9)

It is easily shown that the new rational functions R̃n(x) are again the RII rational functions
satisfying the orthogonality relations

L̃

[
R̃n(x)∏n−1

i=1 (x − βi)
xm

]
= 0, m = 0, 1, . . . , n − 1, (10)

where

L̃ = x − λ

x − α1
L . (11)

The transformation (8) is called the Christoffel transformation. There also exists the reciprocal
transformation to the Christoffel transformation

Rn(x) = Cn(x − αn+1)R̃n(x) + Dn(x − βn−1)R̃n−1(x)

x − α1
, (12)

where Cn and Dn are some constants. This transformation (12) is called the Geronimus
transformation. These transformations (8) and (12) can be regarded as spectral transformations
for the RII rational functions.

The spectral transformations (8) and (12) for the RII rational functions induce a discrete
integrable system which the coefficients An,Bn, Cn and Dn satisfy. To see this, we introduce
a discrete time t as the number of times that the Christoffel transformations are applied to the
initial RII rational functions R0

n(x) = Rn(x). Then the spectral transformations are written as
follows:

Rt+1
n (x) = x − αt+1

x − λt

(
At

nR
t
n+1(x) + Bt

nR
t
n(x)

)
, (13a)

Rt
n(x) = Ct

n(x − αt+n+1)R
t+1
n (x) + Dt

n(x − βn−1)R
t+1
n−1(x)

x − αt+1
. (13b)

From the compatibility condition of the spectral transformations (13), we derive a discrete
integrable system, the RII chain [11],

Bt+1
n Ct+1

n + At+1
n−1D

t+1
n − 1

At+1
n Ct+1

n

= Bt
nC

t
n + At

nD
t
n+1 − 1

At
nC

t
n+1

, (14a)

αt+n+2B
t+1
n Ct+1

n + βn−1A
t+1
n−1D

t+1
n − λt+1

At+1
n Ct+1

n

= αt+n+1B
t
nC

t
n + βnA

t
nD

t
n+1 − λt

At
nC

t
n+1

, (14b)

Bt+1
n−1D

t+1
n

At+1
n Ct+1

n

= Bt
nD

t
n

At
nC

t
n+1

. (14c)

3. Determinant solution on a semi-infinite lattice

In this section we give a particular solution for the RII chain by using the bilinear
method.
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The RII chain (14) is transformed to the bilinear equations

(αt+n+1 − βn)f̃
t
nf

t+1
n+1 + (βn − λt )f̃

t+1
n f t

n+1 + (λt − αt+n+1)g
t+1
n f̃ t

n+1 = 0, (15a)

(αt+n+1 − βn−1)f̃
t
nf

t+1
n+1 + (βn−1 − λt )f̃

t+1
n f t

n+1 + (λt − αt+n+1)f
t+1
n g̃t

n+1 = 0, (15b)

f t
ngt+1

n − gt
nf

t+1
n = (αt+n − λt )(βn − βn−1)f

t+1
n−1f

t
n+1, (15c)

f̃ t
ng̃

t+1
n − g̃t

nf̃
t+1
n = (αt+n+1 − λt )(βn−1 − βn−2)f̃

t+1
n−1f̃

t
n+1, (15d)

through the dependent variable transformations

At
n = αt+n+1 − λt , (16a)

Bt
n = f t

nf t+1
n+1

f t+1
n f t

n+1

, (16b)

Ct
n = f t+1

n f̃ t
n

f t
n f̃ t+1

n

, (16c)

Dt
n = (αt+n+1 − λt )

f t+1
n−1f̃

t
n+1

f t
n f̃ t+1

n

. (16d)

It can be shown that if f t
n, f̃ t

n, g
t
n and g̃t

n satisfy the bilinear equations (15), then At
n, B

t
n, C

t
n

and Dt
n satisfy the RII chain (14).

We give a solution for the RII chain on a semi-infinite lattice.

Theorem 1. Define the τ functions τ k,l,t
n and σ k,l,t

n as

τ k,l,t
n =

∣∣∣∣∣∣∣∣∣∣

ct
k,l(s) ct

k,l+1(s) · · · ct
k,l+n−1(s)

ct
k+1,l(s) ct

k+1,l+1(s) · · · ct
k+1,l+n−1(s)

...
...

...

ct
k+n−1,l(s) ct

k+n−1,l+1(s) · · · ct
k+n−1,l+n−1(s)

∣∣∣∣∣∣∣∣∣∣
, (17a)

σ k,l,t
n =

∣∣∣∣∣∣∣∣∣∣

ct
k,l(s) · · · ct

k,l+n−2(s) dt
k,l+n−1(s)

ct
k+1,l(s) · · · ct

k+1,l+n−2(s) dt
k+1,l+n−1(s)

...
...

...

ct
k+n−1,l(s) · · · ct

k+n−1,l+n−2(s) dt
k+n−1,l+n−1(s)

∣∣∣∣∣∣∣∣∣∣
, (17b)

where the elements ct
k,l(s) and dt

k,l(s) satisfy the dispersion relations

ct
k,l(s + 1) = ct

k−1,l(s) + αk+t c
t
k,l(s) = ct

k,l−1(s) + βlc
t
k,l(s) = ct+1

k−1,l(s) + λtc
t
k,l(s), (18a)

dt
k,l(s) = ct

k,l+1(s + 1) − βlc
t
k,l+1(s). (18b)

Then the τ functions (17) give a solution for the bilinear equations

(αk+t+n+1 − βl+n)τ
k+1,l−1,t
n τ

k,l,t+1
n+1 + (βl+n − λt )τ

k+1,l−1,t+1
n τ

k,l,t
n+1

+ (λt − αk+t+n+1)σ
k,l,t+1
n τ

k+1,l−1,t
n+1 = 0, (19a)

(αk+t+n+1 − βl+n−1)τ
k+1,l−1,t
n τ

k,l,t+1
n+1 + (βl+n−1 − λt )τ

k+1,l−1,t+1
n τ

k,l,t
n+1

+ (λt − αk+t+n+1)τ
k,l,t+1
n σ

k+1,l−1,t
n+1 = 0, (19b)
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τ k,l,t
n σ k,l,t+1

n − σ k,l,t
n τ k,l,t+1

n = (αk+t+n − λt )(βl+n − βl+n−1)τ
k,l,t+1
n−1 τ

k,l,t
n+1 , (19c)

on the semi-infinite lattice

τ
k,l,t
−1 = τ

k,l,t
−2 = · · · = 0, σ

k,l,t
−1 = σ

k,l,t
−2 = · · · = 0, τ

k,l,t
0 = σ

k,l,t
0 = 1. (20)

An example of the function ct
k,l(s) is given by

ct
k,l(s) =

∞∑
j=1

wjx
s
j

∏t−1
i=−∞(xj − λi)∏t+k

i=−∞(xj − αi)
∏l

i=−∞(xi − βi)
. (21)

As the bilinear equations (19) are reduced to those of the RII chain (15) in the case of
k = l = 0, we have obtained a solution for the RII chain.

Corollary 2. For the τ functions (17),

f t
n = τ 0,0,t

n , f̃ t
n = τ 1,−1,t

n , gt
n = σ 0,0,t

n , g̃t
n = σ 1,−1,t

n , (22)

give a solution for the bilinear equations of the RII chain (15) on the semi-infinite lattice (20).

We note that the function σ 1,−1,t
n is the auxiliary variable which is introduced in decoupling

the RII chain into bilinear equations. In terms of the variables Bt
n, C

t
n and Dt

n, the corresponding
boundary condition is given by

Bt
−1 = Bt

−2 = · · · = 1, Ct
0 = Ct

−1 = · · · = 1, Dt
0 = Dt

−1 = · · · = 0. (23)

Proof of Theorem 1. We show that the τ functions (17) satisfy the bilinear equations (15).
Consider the identity∣∣∣∣f1 · · · fn a1 ∅ a2 a3

∅ a1 f1 · · · fn−1 a2 a3

∣∣∣∣ = 0, (24)

where fi, ai are arbitrary (n + 1)-dimensional column vectors. Applying the Laplace expansion
to the left-hand side of the identity (24), we obtain

|f1 · · · fn−1 fn a1| · |f1 · · · fn−1 a2 a3|
−|f1 · · · fn−1 fn a2| · |f1 · · · fn−1 a1 a3|
+ |f1 · · · fn−1 fn a3| · |f1 · · · fn−1 a1 a2| = 0,

(25)

which is one of the Plücker relations. The bilinear equation (15a) follows from the Plücker
relation (25) with

fi = (
ct+1
k+i,l+n−2(s + n − 1) · · · ct+1

k+i,l+n−2(s) ct+1
k+i,l+n−1(s)

)�
, (26a)

a1 = (
dt+1

k+n−1,l+n−1(s + n − 1) · · · dt+1
k+n−1,l+n−1(s) ct+1

k+n−1,l+n(s)
)�

, (26b)

a2 = (
ct
k+n,l+n−2(s + n − 1) · · · ct

k+n,l+n−2(s) ct
k+n,l+n−1(s)

)�
, (26c)

a3 = (
0 · · · 0 1

)�
. (26d)

Indeed, we can see that

|f1 · · · fn−1 fn a1| = −(αk+t+n+1 − βl+n)τ
k,l,t+1
n+1 , (27a)

|f1 · · · fn−1 a2 a3| = τ k+1,l−1,t
n , (27b)

|f1 · · · fn−1 fn a2| = (λt − αk+t+n+1)τ
k+1,l−1,t
n+1 , (27c)
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|f1 · · · fn−1 a1 a3| = σ k,l,t+1
n , (27d)

|f1 · · · fn−1 fn a3| = τ k+1,l−1,t+1
n , (27e)

|f1 · · · fn−1 a1 a2| = −(βl+n − λt )τ
k,l,t
n+1 . (27f )

Similarly, the bilinear equation (15b) is reduced to the Plücker relation (25) with

fi = (
ct+1
k+i,l+n−2(s + n − 1) · · · ct+1

k+i,l+n−2(s) dt+1
k+i,l+n−1(s)

)�
, (28a)

a1 = (
ct+1
k+n−1,l+n−1(s + n − 1) · · · ct+1

k+n−1,l+n−1(s) ct+1
k+n−1,l+n(s)

)�
, (28b)

a2 = (
ct
k+n,l+n−2(s + n − 1) · · · ct

k+n,l+n−2(s) ct
k+n,l+n−1(s)

)�
, (28c)

a3 = (
0 · · · 0 1

)�
. (28d)

Let D be some determinant, and D
[
i1 i2 ... in
j1 j2 ... jn

]
be the determinant with the i1, . . . , inth

rows and the j1, . . . , jnth columns removed from D. Then the following identity is satisfied:

D · D

[
i k

j l

]
= D

[
i

j

]
D

[
k

l

]
− D

[
i

l

]
D

[
k

j

]
, (29)

which is called the Jacobi identity. The bilinear equation (15c) follows from the Jacobi identity
(29) with i = j = 1, k = l = n + 1, where D is given by

D =

∣∣∣∣∣∣∣∣∣∣

dt
k+n−1,l+n−1(s) ct

k+n−1,l(s) · · · ct
k+n−1,l+n−1(s)

dt+1
k,l+n−1(s) ct+1

k,l (s) · · · ct+1
k,l+n−1(s)

...
...

...

dt+1
k+n−1,l+n−1(s) ct+1

k+n−1,l(s) · · · ct+1
k+n−1,l+n−1(s)

∣∣∣∣∣∣∣∣∣∣
. (30)

Indeed, we can see that

D = −(αk+t+n − λt )(βl+n − βl+n−1)τ
k,l,t
n+1 , (31a)

D

[
1 n + 1
1 n + 1

]
= τ

k,l,t+1
n−1 , (31b)

D

[
1
1

]
= τ k,l,t+1

n , (31c)

D

[
n + 1
n + 1

]
= σ k,l,t

n , (31d)

D

[
1

n + 1

]
= (−1)n−1σ k,l,t+1

n , (31e)

D

[
n + 1

1

]
= (−1)n−1τ k,l,t

n . (31f )

This completes the proof. �

4. Bäcklund transformations for the non-autonomous Toda-type integrable systems

The RII chain has close relations with many other Toda-type integrable systems. In this section
we discuss Bäcklund transformations of Toda-type integrable systems including the RII chain.
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The Bäcklund transformation is a transformation which maps some solution to other one
and induces a discrete integrable system. A typical example is the discrete Toda lattice, which
is nothing but the Bäcklund transformation for the continuous Toda lattice. The τ functions
(17) defined in the previous section depend on the variables n, k, l and t. For the RII chain, the
variables k and l are auxiliary variables and describe the Bäcklund transformations. We first
give Bäcklund transformations for the RII chain in terms of bilinear equations. The Bäcklund
transformations induce many non-autonomous Toda-type integrable systems such as the Toda
lattice, the generalized relativistic Toda lattice, the RI chain and others. We then clarify a
relationship among the RII chain and those Toda-type integrable systems.

We introduce the independent variable z as follows:

ct
k,l(s + 1) = d

dz
ct
k,l(s) = ct

k−1,l(s) + αk+t c
t
k,l(s) = ct

k,l−1(s) + βlc
t
k,l(s)

= ct+1
k−1,l(s) + λtc

t
k,l(s). (32)

The variable z can be regarded as a continuous variable corresponds to the discrete variable k
or l. We first propose Bäcklund transformations for the RII chain in terms of bilinear equations.

Proposition 3. The τ functions (17) satisfy the bilinear equations

τ k,l,t
n τ k+1,l+1,t

n − τ k,l+1,t
n τ k+1,l,t

n = τ
k+1,l+1,t
n−1 τ

k,l,t
n+1 , (33a)

τ k+1,l,t
n τ

k−1,l,t
n+1 + (αk+t+n − βl+n)τ

k,l,t
n τ

k,l,t
n+1 = τ k,l+1,t

n τ
k,l−1,t
n+1 , (33b)

τ k,l+1,t
n τ k,l−1,t

n − τ
k+1,l,t
n−1 τ

k−1,l,t
n+1 = τ k,l,t

n σ k,l,t
n , (33c)

τ k+1,l+1,t
n σ

k,l,t
n+1 − σ k+1,l+1,t

n τ
k,l,t
n+1 = (βl+n+1 − βl+n)τ

k+1,l,t
n τ

k,l+1,t
n+1 , (33d)

Dzτ
k,l,t
n · τ k,l+1,t

n = τ
k+1,l+1,t
n−1 τ

k−1,l,t
n+1 , (33e)

(Dz + βl+n)τ
k+1,l,t
n · τ

k,l,t
n+1 = −τ k+1,l+1,t

n τ
k,l−1,t
n+1 , (33f )

D2
z τ

k,l,t
n · τ k,l,t

n = 2τ
k,l,t
n−1 τ

k,l,t
n+1 , (33g)

where Dz is the bilinear differential operator defined by

Dn
z f (z) · g(z) = dn

dz′n f (z + z′)g(z − z′)|z′=0. (34)

Many significant Toda-type integrable systems are derived from a part of the bilinear
equations (19) and (33) satisfied with the τ functions (17). Thus the rest of the bilinear
equations are the Bäcklund transformations for those integrable systems. In what follows we
list derived nonlinear equations and its Bäcklund transformations:

(i) Toda lattice
The bilinear equation (33g) is transformed to the Toda lattice

dan

dz
= an(bn − bn−1), (35a)

dbn

dz
= an+1 − an (35b)

through the dependent variable transformations

an = τ
k,l,t
n−1 τ

k,l,t
n+1(

τ
k,l,t
n

)2 , (36a)
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bn = d log
(
τ

k,l,t
n+1

/
τ k,l,t
n

)
dz

. (36b)

The bilinear equations (19) and (33a)–(33f ) are the Bäcklund transformations for the
Toda lattice. This system has no arbitrary parameter.

(ii) Discrete Toda lattice
The bilinear equations (33c) and (33d) are transformed to the discrete Toda lattice

Al−1
n + Bl−1

n + βl−1 = Al
n + Bl

n+1 + βl, (37a)

Al−1
n−1B

l−1
n = Al

nB
l
n (37b)

through the dependent variable transformation

Al
n = τ k−n+1,l−n+1,t

n τ
k−n,l−n−1,t
n+1

τ
k−n+1,l−n,t
n τ

k−n,l−n,t
n+1

, (38a)

Bl
n = − τ

k−n+2,l−n+1,t
n−1 τ

k−n,l−n,t
n+1

τ
k−n+1,l−n+1,t
n τ

k−n+1,l−n,t
n

. (38b)

It is well known that the continuous and discrete Toda lattice are induced by spectral
transformations for orthogonal polynomials. The bilinear equations (19) and (33a),
(33b), (33e)–(33g) are the Bäcklund transformations for the discrete Toda lattice. This
system has one arbitrary parameter βl .

(iii) Generalized relativistic Toda lattice
Through the dependent variable transformations

an = − τ
k−n+2,l−1,t
n−1 τ

k−n,l,t
n+1

τ
k−n+1,l,t
n τ

k−n+1,l−1,t
n

, (39a)

bn = τ k−n+1,l−1,t
n σ

k−n,l,t
n+1

τ
k−n+1,l,t
n τ

k−n,l−1,t
n+1

+ βl+n, (39b)

the bilinear equations (33c)–(33f ) are transformed to

dan

dz
= an(an−1 − an+1 + bn − bn−1), (3a)

dbn

dz
= βl+n−1an+1 − βl+nan + bn(an − an+1), (3b)

which is the non-autonomous generalization of the relativistic Toda lattice. The
generalized relativistic Toda lattice was derived by Vinet and Zhedanov [14] in the study
of a spectral transformation for the RI rational functions. The bilinear equations (19)
and (33a), (33b), (33g) are the Bäcklund transformations for the generalized relativistic
Toda lattice. This system has one arbitrary parameter βl+n and is reduced to the ordinary
relativistic Toda lattice [10, 9] by specializing βl+n to a constant.

(iv) RI chain
The bilinear equations (33a)–(33d) are transformed to the RI chain,

Al−1
n−1C

l−1
n − 1

Al−1
n

= Al
nC

l
n+1 − 1

Al
n

, (4a)
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αk+t+nA
l−1
n−1C

l−1
n − Bl−1

n − βl−1

Al−1
n

= αk+t+n+1A
l
nC

l
n+1 − Bl

n − βl

Al
n

, (4b)

Bl−1
n−1C

l−1
n

Al−1
n

= Bl
nC

l
n

Al
n

, (4c)

through the dependent variable transformations

Al
n = − τ k−n+2,l−1,t

n τ
k−n,l,t
n+1

τ
k−n+1,l−1,t
n τ

k−n+1,l,t
n+1

, (5a)

Bl
n = τ k−n+1,l,t

n τ
k−n+1,l−1,t
n+1

τ
k−n+1,l−1,t
n τ

k−n+1,l,t
n+1

, (5b)

Cl
n = − τ

k−n+2,l−1,t
n−1 τ

k−n,l,t
n+1

τ
k−n+1,l,t
n τ

k−n+1,l−1,t
n

. (5c)

The RI chain was also derived through the spectral transformation for the RI rational
functions. A determinant solution for the system was discussed in [7]. The bilinear
equations (19) and (33e)–(33g) are the Bäcklund transformations for the RI chain. This
system has two arbitrary parameters αk+t+n and βl and is reduced to the discrete relativistic
Toda lattice [13, 5] by specializing the arbitrary parameter αk+t+n to a constant.

(v) RII chain
The bilinear equations (19) are transformed to the RII chain,

Bt+1
n Ct+1

n + At+1
n−1D

t+1
n − 1

At+1
n Ct+1

n

= Bt
nC

t
n + At

nD
t
n+1 − 1

At
nC

t
n+1

, (6a)

αk+t+n+2B
t+1
n Ct+1

n + βl+n−1A
t+1
n−1D

t+1
n − λt+1

At+1
n Ct+1

n

(6b)

= αk+t+n+1B
t
nC

t
n + βl+nA

t
nD

t
n+1 − λt

At
nC

t
n+1

, (6c)

Bt+1
n−1D

t+1
n

At+1
n Ct+1

n

= Bt
nD

t
n

At
nC

t
n+1

, (6d)

through the dependent variable transformations

Ak,l,t
n = αk+t+n+1 − λt , (7a)

Bk,l,t
n = τ k,l,t

n τ
k,l,t+1
n+1

τ
k,l,t+1
n τ

k,l,t
n+1

, (7b)

Ck,l,t
n = τ k,l,t+1

n τ k+1,l−1,t
n

τ
k,l,t
n τ

k+1,l−1,t+1
n

, (7c)

Dk,l,t
n = (αk+t+n+1 − λt )

τ
k,l,t+1
n−1 τ

k+1,l−1,t
n+1

τ
k,l,t
n τ

k+1,l−1,t+1
n

. (7d)

The bilinear equations (33) are the Bäcklund transformations for the RII chain. This
system has three arbitrary parameters: αk+t+n, βl+n and λt .
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5. Concluding remarks

In this paper, we have derived bilinear equations of the RII chain and shown that a particular
solution on a semi-infinite lattice is given in terms of Casorati-type determinants. We have
also given Bäcklund transformations for the RII chain in terms of the bilinear equation and
clarified a relationship among the RII chain and non-autonomous Toda-type integrable systems
induced by the Bäcklund transformations.

The τ functions in the particular solution which we constructed depend on the variables
n, k, l and t. Among them, n and t denote the independent variables of the RII chain. The
variables k and l which do not appear in the equations describe the Bäcklund transformations
of the RII chain. The three non-autonomous parameters of the RII chain reflect such a structure
of the system. As shown in section 4, the Bäcklund transformations induce many significant
non-autonomous Toda-type integrable systems. The τ functions of the RII chain give us a
unified approach to these non-autonomous Toda-type integrable systems including the RII

chain.
We have considered a solution for the RII chain on a semi-infinite lattice in this paper.

Other particular solutions on various types of lattices such as an infinite lattice and a periodic
lattice are a future subject to be studied.
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