Determinant structure of non-autonomous Toda-type integrable systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 39779
(http://iopscience.iop.org/0305-4470/39/4/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:51

Please note that terms and conditions apply.

Determinant structure of non-autonomous Toda-type integrable systems

Atsushi Mukaihira ${ }^{1}$ and Satoshi Tsujimoto ${ }^{2}$
${ }^{1}$ Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-858, Japan
${ }^{2}$ Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan

Received 18 January 2005, in final form 31 October 2005
Published 11 January 2006
Online at stacks.iop.org/JPhysA/39/779

Abstract

The integrable chain of $R_{I I}$ type by Spiridonov-Zhedanov is studied by using the bilinear method. Bilinear equations of the system are derived by applying appropriate-dependent variable transformations. A particular solution on a semi-infinite lattice is explicitly given in terms of the Casorati-type determinants. It is shown that the $R_{I I}$ chain and the Toda-type integrable systems are connected by Bäcklund transformations.

PACS numbers: 02.30.Ik, 02.30.Gp, 05.45.Yv

1. Introduction

A class of nonlinear integrable systems are closely related to orthogonal and biorthogonal polynomials. It is well known that the Toda lattice can be derived from prescribing a spectral transformation on orthogonal polynomials. The relativistic Toda lattice is another important example, which is related to Laurent biorthogonal polynomials [4]. Such relationships between integrable systems and orthogonal, biorthogonal polynomials are now well developed based on the soliton theory.

Recently, the biorthogonal rational functions of R_{I} and $R_{I I}$ type were introduced by Ismail and Masson [3] in relation to the multi-point Padé approximation. These biorthogonal rational functions can be regarded as generalizations of orthogonal polynomials and Laurent biorthogonal polynomials [15]. Spiridonov and Zhedanov [11, 12] studied a spectral transformation for the $R_{I I}$ rational functions and derived a discrete integrable system, the $R_{I I}$ chain. However, there are few analyses for the $R_{I I}$ chain from the viewpoint of the integrable systems. Many fundamental properties as an integrable system are still missing and the classification of the $R_{I I}$ chain is not known. An interesting feature of the $R_{I I}$ chain is that it is the non-autonomous system: the $R_{I I}$ chain has three arbitrary parameters. It is also expected that the study of the system will reveal a feature specific to non-autonomous integrable systems. Hirota's bilinear formalism is one of the effective methods to clarify
algebraic structures of integrable systems (cf [1, 2, 8]). By this method, integrable systems are transformed to bilinear equations of τ functions. For the solutions, the τ functions are expressed as determinants whose elements satisfy linear relations and the bilinear equations are reduced to identities of determinants. The τ functions reveal an underlying algebraic structures of the system and let us know relations with other integrable systems. In this sense, τ function is one of the most fundamental objects in the studies on integrable systems and we can directly approach them through the bilinear method. In this paper we study the $R_{I I}$ chain using the bilinear method.

The aim of this paper is to derive bilinear equations of the $R_{I I}$ chain and to clarify a determinant structure of a particular solution on a semi-infinite lattice. To be more precise, we transform the $R_{I I}$ chain to bilinear equations and construct a particular solution. A structure of the solution gives us an information about Bäcklund transformations which the $R_{I I}$ chain admits. Then we show that the $R_{I I}$ chain and the Toda-type integrable systems are connected by the Bäcklund transformations.

This paper is organized as follows. In section 2 , we review how the $R_{I I}$ chain is derived from the $R_{I I}$ rational functions. In section 3, we derive bilinear equations of the $R_{I I}$ chain and show that a particular solution on a semi-infinite lattice is given in terms of Casorati-type determinants. In section 4, we give Bäcklund transformations for the $R_{I I}$ chain and clarify a relationship among the $R_{I I}$ chain and non-autonomous Toda-type integrable systems induced by the Bäcklund transformations. Section 5 is devoted to concluding remarks.

2. Derivation of the $\boldsymbol{R}_{I I}$ chain

In this section we give a brief review of the $R_{I I}$ chain from the $R_{I I}$ rational functions. Consider polynomials $P_{n}(x)$ generated by the recurrence relation

$$
\begin{equation*}
P_{n+1}(x)+\left(u_{n} x+v_{n}\right) P_{n}(x)+w_{n}\left(x-\alpha_{n}\right)\left(x-\beta_{n-1}\right) P_{n-1}(x)=0, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
P_{-1}(x)=0, \quad P_{0}(x)=1, \tag{2}
\end{equation*}
$$

where u_{n}, v_{n} and w_{n} are some constants. The $R_{I I}$ rational functions $R_{n}(x)$ are defined as

$$
\begin{equation*}
R_{n}(x)=\frac{P_{n}(x)}{\prod_{i=1}^{n}\left(x-\alpha_{i}\right)}, \quad n=1,2, \ldots, \quad R_{-1}(x)=0, \quad R_{0}(x)=1 \tag{3}
\end{equation*}
$$

under the assumptions

$$
\begin{equation*}
w_{n} \neq 0, \quad P_{n}\left(\alpha_{n}\right) \neq 0, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

These functions satisfy the recurrence relation
$\left(x-\alpha_{n+1}\right) R_{n+1}(x)+\left(u_{n} x+v_{n}\right) R_{n}(x)+w_{n}\left(x-\beta_{n-1}\right) R_{n-1}(x)=0, \quad n=0,1, \ldots$
with the same initial conditions

$$
\begin{equation*}
R_{-1}(x)=0, \quad R_{0}(x)=1 \tag{6}
\end{equation*}
$$

Ismail and Masson [3] established the orthogonality relation for the $R_{I I}$ rational functions: there exists a linear functional \mathscr{L} on the space of rational functions $1 / \prod_{i=1}^{k}$ $\left(x-\alpha_{i}\right) \prod_{i=1}^{l}\left(x-\beta_{i}\right), k, l=0,1, \ldots$, such that the orthogonality relation

$$
\begin{equation*}
\mathscr{L}\left[\frac{R_{n}(x)}{\prod_{i=1}^{n-1}\left(x-\beta_{i}\right)} x^{m}\right]=0, \quad m=0,1, \ldots, n-1 \tag{7}
\end{equation*}
$$

holds. A transformation for the $R_{I I}$ rational functions is given by

$$
\begin{equation*}
\tilde{R}_{n}(x)=\frac{x-\alpha_{1}}{x-\lambda}\left(A_{n} R_{n+1}(x)+B_{n} R_{n}(x)\right) \tag{8}
\end{equation*}
$$

where A_{n} and B_{n} are some constants satisfying the relation

$$
\begin{equation*}
A_{n} R_{n+1}(\lambda)+B_{n} R_{n}(\lambda)=0 \tag{9}
\end{equation*}
$$

It is easily shown that the new rational functions $\tilde{R}_{n}(x)$ are again the $R_{I I}$ rational functions satisfying the orthogonality relations

$$
\begin{equation*}
\tilde{\mathscr{L}}\left[\frac{\tilde{R}_{n}(x)}{\prod_{i=1}^{n-1}\left(x-\beta_{i}\right)} x^{m}\right]=0, \quad m=0,1, \ldots, n-1, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathscr{L}}=\frac{x-\lambda}{x-\alpha_{1}} \mathscr{L} . \tag{11}
\end{equation*}
$$

The transformation (8) is called the Christoffel transformation. There also exists the reciprocal transformation to the Christoffel transformation

$$
\begin{equation*}
R_{n}(x)=\frac{C_{n}\left(x-\alpha_{n+1}\right) \tilde{R}_{n}(x)+D_{n}\left(x-\beta_{n-1}\right) \tilde{R}_{n-1}(x)}{x-\alpha_{1}} \tag{12}
\end{equation*}
$$

where C_{n} and D_{n} are some constants. This transformation (12) is called the Geronimus transformation. These transformations (8) and (12) can be regarded as spectral transformations for the $R_{I I}$ rational functions.

The spectral transformations (8) and (12) for the $R_{I I}$ rational functions induce a discrete integrable system which the coefficients A_{n}, B_{n}, C_{n} and D_{n} satisfy. To see this, we introduce a discrete time t as the number of times that the Christoffel transformations are applied to the initial $R_{I I}$ rational functions $R_{n}^{0}(x)=R_{n}(x)$. Then the spectral transformations are written as follows:

$$
\begin{align*}
& R_{n}^{t+1}(x)=\frac{x-\alpha_{t+1}}{x-\lambda_{t}}\left(A_{n}^{t} R_{n+1}^{t}(x)+B_{n}^{t} R_{n}^{t}(x)\right) \tag{13a}\\
& R_{n}^{t}(x)=\frac{C_{n}^{t}\left(x-\alpha_{t+n+1}\right) R_{n}^{t+1}(x)+D_{n}^{t}\left(x-\beta_{n-1}\right) R_{n-1}^{t+1}(x)}{x-\alpha_{t+1}} \tag{13b}
\end{align*}
$$

From the compatibility condition of the spectral transformations (13), we derive a discrete integrable system, the $R_{I I}$ chain [11],
$\frac{B_{n}^{t+1} C_{n}^{t+1}+A_{n-1}^{t+1} D_{n}^{t+1}-1}{A_{n}^{t+1} C_{n}^{t+1}}=\frac{B_{n}^{t} C_{n}^{t}+A_{n}^{t} D_{n+1}^{t}-1}{A_{n}^{t} C_{n+1}^{t}}$,
$\frac{\alpha_{t+n+2} B_{n}^{t+1} C_{n}^{t+1}+\beta_{n-1} A_{n-1}^{t+1} D_{n}^{t+1}-\lambda_{t+1}}{A_{n}^{t+1} C_{n}^{t+1}}=\frac{\alpha_{t+n+1} B_{n}^{t} C_{n}^{t}+\beta_{n} A_{n}^{t} D_{n+1}^{t}-\lambda_{t}}{A_{n}^{t} C_{n+1}^{t}}$,
$\frac{B_{n-1}^{t+1} D_{n}^{t+1}}{A_{n}^{t+1} C_{n}^{t+1}}=\frac{B_{n}^{t} D_{n}^{t}}{A_{n}^{t} C_{n+1}^{t}}$.

3. Determinant solution on a semi-infinite lattice

In this section we give a particular solution for the $R_{I I}$ chain by using the bilinear method.

The $R_{I I}$ chain (14) is transformed to the bilinear equations

$$
\begin{align*}
& \left(\alpha_{t+n+1}-\beta_{n}\right) \tilde{f}_{n}^{t} f_{n+1}^{t+1}+\left(\beta_{n}-\lambda_{t}\right) \tilde{f}_{n}^{t+1} f_{n+1}^{t}+\left(\lambda_{t}-\alpha_{t+n+1}\right) g_{n}^{t+1} \tilde{f}_{n+1}^{t}=0, \tag{15a}\\
& \left(\alpha_{t+n+1}-\beta_{n-1}\right) \tilde{f}_{n}^{t} f_{n+1}^{t+1}+\left(\beta_{n-1}-\lambda_{t}\right) \tilde{f}_{n}^{t+1} f_{n+1}^{t}+\left(\lambda_{t}-\alpha_{t+n+1}\right) f_{n}^{t+1} \tilde{g}_{n+1}^{t}=0, \tag{15b}\\
& f_{n}^{t} g_{n}^{t+1}-g_{n}^{t} f_{n}^{t+1}=\left(\alpha_{t+n}-\lambda_{t}\right)\left(\beta_{n}-\beta_{n-1}\right) f_{n-1}^{t+1} f_{n+1}^{t}, \tag{15c}\\
& \tilde{f}_{n}^{t} \tilde{g}_{n}^{t+1}-\tilde{g}_{n}^{t} \tilde{f}_{n}^{t+1}=\left(\alpha_{t+n+1}-\lambda_{t}\right)\left(\beta_{n-1}-\beta_{n-2}\right) \tilde{f}_{n-1}^{t+1} \tilde{f}_{n+1}^{t}, \tag{15d}
\end{align*}
$$

through the dependent variable transformations

$$
\begin{align*}
A_{n}^{t} & =\alpha_{t+n+1}-\lambda_{t} \tag{16a}\\
B_{n}^{t} & =\frac{f_{n}^{t} f_{n+1}^{t+1}}{f_{n}^{t+1} f_{n+1}^{t}}, \tag{16b}\\
C_{n}^{t} & =\frac{f_{n}^{t+1} \tilde{f}_{n}^{t}}{f_{n}^{t} \tilde{f}_{n}^{t+1}} \tag{16c}\\
D_{n}^{t} & =\left(\alpha_{t+n+1}-\lambda_{t}\right) \frac{f_{n-1}^{t+1} \tilde{f}_{n+1}^{t}}{f_{n}^{t} \tilde{f}_{n}^{t+1}} \tag{16d}
\end{align*}
$$

It can be shown that if $f_{n}^{t}, \tilde{f}_{n}^{t}, g_{n}^{t}$ and \tilde{g}_{n}^{t} satisfy the bilinear equations (15), then $A_{n}^{t}, B_{n}^{t}, C_{n}^{t}$ and D_{n}^{t} satisfy the $R_{I I}$ chain (14).

We give a solution for the $R_{I I}$ chain on a semi-infinite lattice.
Theorem 1. Define the τ functions $\tau_{n}^{k, l, t}$ and $\sigma_{n}^{k, l, t}$ as

$$
\begin{align*}
\tau_{n}^{k, l, t} & =\left|\begin{array}{cccc}
c_{k, l}^{t}(s) & c_{k, l+1}^{t}(s) & \cdots & c_{k, l+n-1}^{t}(s) \\
c_{k+1, l}^{t}(s) & c_{k+1, l+1}^{t}(s) & \cdots & c_{k+1, l+n-1}^{t}(s) \\
\vdots & \vdots & & \vdots \\
c_{k+n-1, l}^{t}(s) & c_{k+n-1, l+1}^{t}(s) & \cdots & c_{k+n-1, l+n-1}^{t}(s)
\end{array}\right| \tag{17a}\\
\sigma_{n}^{k, l, t} & =\left|\begin{array}{cccc}
c_{k, l}^{t}(s) & \cdots & c_{k, l+n-2}^{t}(s) & d_{k, l+n-1}^{t}(s) \\
c_{k+1, l}^{t}(s) & \cdots & c_{k+1, l+n-2}^{t}(s) & d_{k+1, l+n-1}^{t}(s) \\
\vdots & & \vdots & \vdots \\
c_{k+n-1, l}^{t}(s) & \cdots & c_{k+n-1, l+n-2}^{t}(s) & d_{k+n-1, l+n-1}^{t}(s)
\end{array}\right| \tag{17b}
\end{align*}
$$

where the elements $c_{k, l}^{t}(s)$ and $d_{k, l}^{t}(s)$ satisfy the dispersion relations
$c_{k, l}^{t}(s+1)=c_{k-1, l}^{t}(s)+\alpha_{k+t} c_{k, l}^{t}(s)=c_{k, l-1}^{t}(s)+\beta_{l} c_{k, l}^{t}(s)=c_{k-1, l}^{t+1}(s)+\lambda_{t} c_{k, l}^{t}(s)$,
$d_{k, l}^{t}(s)=c_{k, l+1}^{t}(s+1)-\beta_{l} c_{k, l+1}^{t}(s)$.
Then the τ functions (17) give a solution for the bilinear equations

$$
\begin{gather*}
\left(\alpha_{k+t+n+1}-\beta_{l+n}\right) \tau_{n}^{k+1, l-1, t} \tau_{n+1}^{k, l, t+1}+\left(\beta_{l+n}-\lambda_{t}\right) \tau_{n}^{k+1, l-1, t+1} \tau_{n+1}^{k, l, t} \\
\quad+\left(\lambda_{t}-\alpha_{k+t+n+1}\right) \sigma_{n}^{k, l, t+1} \tau_{n+1}^{k+1, l-1, t}=0, \tag{19a}\\
\left(\alpha_{k+t+n+1}-\beta_{l+n-1}\right) \tau_{n}^{k+1, l-1, t} \tau_{n+1}^{k, l, t+1}+\left(\beta_{l+n-1}-\lambda_{t}\right) \tau_{n}^{k+1, l-1, t+1} \tau_{n+1}^{k, l, t} \\
\quad+\left(\lambda_{t}-\alpha_{k+t+n+1}\right) \tau_{n}^{k, l, t+1} \sigma_{n+1}^{k+1, l-1, t}=0, \tag{19b}
\end{gather*}
$$

$$
\begin{equation*}
\tau_{n}^{k, l, t} \sigma_{n}^{k, l, t+1}-\sigma_{n}^{k, l, t} \tau_{n}^{k, l, t+1}=\left(\alpha_{k+t+n}-\lambda_{t}\right)\left(\beta_{l+n}-\beta_{l+n-1}\right) \tau_{n-1}^{k, l, t+1} \tau_{n+1}^{k, l, t}, \tag{19c}
\end{equation*}
$$

on the semi-infinite lattice

$$
\begin{equation*}
\tau_{-1}^{k, l, t}=\tau_{-2}^{k, l, t}=\cdots=0, \quad \sigma_{-1}^{k, l, t}=\sigma_{-2}^{k, l, t}=\cdots=0, \quad \tau_{0}^{k, l, t}=\sigma_{0}^{k, l, t}=1 \tag{20}
\end{equation*}
$$

An example of the function $c_{k, l}^{t}(s)$ is given by

$$
\begin{equation*}
c_{k, l}^{t}(s)=\sum_{j=1}^{\infty} \frac{w_{j} x_{j}^{s} \prod_{i=-\infty}^{t-1}\left(x_{j}-\lambda_{i}\right)}{\prod_{i=-\infty}^{t+k}\left(x_{j}-\alpha_{i}\right) \prod_{i=-\infty}^{l}\left(x_{i}-\beta_{i}\right)} \tag{21}
\end{equation*}
$$

As the bilinear equations (19) are reduced to those of the $R_{I I}$ chain (15) in the case of $k=l=0$, we have obtained a solution for the $R_{I I}$ chain.

Corollary 2. For the τ functions (17),

$$
\begin{equation*}
f_{n}^{t}=\tau_{n}^{0,0, t}, \quad \tilde{f}_{n}^{t}=\tau_{n}^{1,-1, t}, \quad g_{n}^{t}=\sigma_{n}^{0,0, t}, \quad \tilde{g}_{n}^{t}=\sigma_{n}^{1,-1, t} \tag{22}
\end{equation*}
$$

give a solution for the bilinear equations of the $R_{I I}$ chain (15) on the semi-infinite lattice (20).
We note that the function $\sigma_{n}^{1,-1, t}$ is the auxiliary variable which is introduced in decoupling the $R_{I I}$ chain into bilinear equations. In terms of the variables B_{n}^{t}, C_{n}^{t} and D_{n}^{t}, the corresponding boundary condition is given by

$$
\begin{equation*}
B_{-1}^{t}=B_{-2}^{t}=\cdots=1, \quad C_{0}^{t}=C_{-1}^{t}=\cdots=1, \quad D_{0}^{t}=D_{-1}^{t}=\cdots=0 \tag{23}
\end{equation*}
$$

Proof of Theorem 1. We show that the τ functions (17) satisfy the bilinear equations (15).
Consider the identity

$$
\left|\begin{array}{ccc|c|ccc|cc}
f_{1} & \cdots & f_{n} & a_{1} & & \emptyset & & a_{2} & a_{3} \tag{24}\\
\hline & \emptyset & & a_{1} & f_{1} & \cdots & f_{n-1} & a_{2} & a_{3}
\end{array}\right|=0
$$

where f_{i}, a_{i} are arbitrary $(n+1)$-dimensional column vectors. Applying the Laplace expansion to the left-hand side of the identity (24), we obtain

$$
\begin{array}{rllllllll}
\mid f_{1} & \cdots & f_{n-1} & f_{n} & a_{1}|\cdot| f_{1} & \cdots & f_{n-1} & a_{2} & a_{3} \mid \\
-\mid f_{1} & \cdots & f_{n-1} & f_{n} & a_{2}|\cdot| f_{1} & \cdots & f_{n-1} & a_{1} & a_{3} \mid \tag{25}\\
+\mid f_{1} & \cdots & f_{n-1} & f_{n} & a_{3}|\cdot| f_{1} & \cdots & f_{n-1} & a_{1} & a_{2} \mid=0,
\end{array}
$$

which is one of the Plücker relations. The bilinear equation (15a) follows from the Plücker relation (25) with
$f_{i}=\left(\begin{array}{llll}c_{k+i, l+n-2}^{t+1}(s+n-1) & \cdots & c_{k+i, l+n-2}^{t+1}(s) & c_{k+i, l+n-1}^{t+1}(s)\end{array}\right)^{\top}$,
$a_{1}=\left(\begin{array}{llll}d_{k+n-1, l+n-1}^{t+1}(s+n-1) & \cdots & d_{k+n-1, l+n-1}^{t+1}(s) & c_{k+n-1, l+n}^{t+1}(s)\end{array}\right)^{\top}$,
$a_{2}=\left(\begin{array}{llll}c_{k+n, l+n-2}^{t}(s+n-1) & \cdots & c_{k+n, l+n-2}^{t}(s) & c_{k+n, l+n-1}^{t}(s)\end{array}\right)^{\top}$,
$a_{3}=\left(\begin{array}{llll}0 & \cdots & 0 & 1\end{array}\right)^{\top}$.
Indeed, we can see that

$$
\begin{align*}
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & a_{1}
\end{array}\right|=-\left(\alpha_{k+t+n+1}-\beta_{l+n}\right) \tau_{n+1}^{k, l, t+1}, \tag{27a}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{2} & a_{3}
\end{array}\right|=\tau_{n}^{k+1, l-1, t} \text {, } \tag{27b}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & a_{2}
\end{array}\right|=\left(\lambda_{t}-\alpha_{k+t+n+1}\right) \tau_{n+1}^{k+1, l-1, t}, \tag{27c}
\end{align*}
$$

$$
\begin{align*}
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{1} & a_{3}
\end{array}\right|=\sigma_{n}^{k, l, t+1}, \tag{27d}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & f_{n} & a_{3}
\end{array}\right|=\tau_{n}^{k+1, l-1, t+1}, \tag{27e}\\
& \left|\begin{array}{lllll}
f_{1} & \cdots & f_{n-1} & a_{1} & a_{2}
\end{array}\right|=-\left(\beta_{l+n}-\lambda_{t}\right) \tau_{n+1}^{k, l, t} . \tag{27f}
\end{align*}
$$

Similarly, the bilinear equation (15b) is reduced to the Plücker relation (25) with
$f_{i}=\left(\begin{array}{llll}c_{k+i, l+n-2}^{t+1}(s+n-1) & \cdots & c_{k+i, l+n-2}^{t+1}(s) & d_{k+i l+n-1}^{t+1}(s)\end{array}\right)^{\top}$,
$a_{1}=\left(\begin{array}{llll}c_{k+n-1, l+n-1}^{t+1}(s+n-1) & \cdots & c_{k+n-1, l+n-1}^{t+1}(s) & c_{k+n-1, l+n}^{t+1}(s)\end{array}\right)^{\top}$,
$a_{2}=\left(\begin{array}{llll}c_{k+n, l+n-2}^{t}(s+n-1) & \cdots & c_{k+n, l+n-2}^{t}(s) & c_{k+n, l+n-1}^{t}(s)\end{array}\right)^{\top}$,
$a_{3}=\left(\begin{array}{llll}0 & \cdots & 0 & 1\end{array}\right)^{\top}$.
Let D be some determinant, and $D\left[\begin{array}{cccc}i_{1} & i_{2} & \ldots & i_{n} \\ j_{1} & j_{2} & \ldots . & j_{n}\end{array}\right]$ be the determinant with the i_{1}, \ldots, i_{n} th rows and the j_{1}, \ldots, j_{n} th columns removed from D. Then the following identity is satisfied:

$$
D \cdot D\left[\begin{array}{cc}
i & k \tag{29}\\
j & l
\end{array}\right]=D\left[\begin{array}{l}
i \\
j
\end{array}\right] D\left[\begin{array}{l}
k \\
l
\end{array}\right]-D\left[\begin{array}{l}
i \\
l
\end{array}\right] D\left[\begin{array}{l}
k \\
j
\end{array}\right]
$$

which is called the Jacobi identity. The bilinear equation (15c) follows from the Jacobi identity (29) with $i=j=1, k=l=n+1$, where D is given by

$$
D=\left|\begin{array}{cccc}
d_{k+n-1, l+n-1}^{t}(s) & c_{k+n-1, l}^{t}(s) & \cdots & c_{k+n-1, l+n-1}^{t}(s) \tag{30}\\
d_{k, l+n-1}^{t+1}(s) & c_{k, l}^{t+1}(s) & \cdots & c_{k, l+n-1}^{t+1}(s) \\
\vdots & \vdots & & \vdots \\
d_{k+n-1, l+n-1}^{t+1}(s) & c_{k+n-1, l}^{t+1}(s) & \cdots & c_{k+n-1, l+n-1}^{t+1}(s)
\end{array}\right|
$$

Indeed, we can see that

$$
\begin{align*}
& D=-\left(\alpha_{k+t+n}-\lambda_{t}\right)\left(\beta_{l+n}-\beta_{l+n-1}\right) \tau_{n+1}^{k, l, t}, \tag{31a}\\
& D\left[\begin{array}{ll}
1 & n+1 \\
1 & n+1
\end{array}\right]=\tau_{n-1}^{k, l, t+1}, \tag{31b}\\
& D\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\tau_{n}^{k, l, t+1}, \tag{31c}\\
& D\left[\begin{array}{c}
n+1 \\
n+1
\end{array}\right]=\sigma_{n}^{k, l, t}, \tag{31d}\\
& D\left[\begin{array}{c}
1 \\
n+1
\end{array}\right]=(-1)^{n-1} \sigma_{n}^{k, l, t+1}, \tag{31e}\\
& D\left[\begin{array}{c}
n+1 \\
1
\end{array}\right]=(-1)^{n-1} \tau_{n}^{k, l, t} . \tag{31f}
\end{align*}
$$

This completes the proof.

4. Bäcklund transformations for the non-autonomous Toda-type integrable systems

The $R_{I I}$ chain has close relations with many other Toda-type integrable systems. In this section we discuss Bäcklund transformations of Toda-type integrable systems including the $R_{I I}$ chain.

The Bäcklund transformation is a transformation which maps some solution to other one and induces a discrete integrable system. A typical example is the discrete Toda lattice, which is nothing but the Bäcklund transformation for the continuous Toda lattice. The τ functions (17) defined in the previous section depend on the variables n, k, l and t. For the $R_{I I}$ chain, the variables k and l are auxiliary variables and describe the Bäcklund transformations. We first give Bäcklund transformations for the $R_{I I}$ chain in terms of bilinear equations. The Bäcklund transformations induce many non-autonomous Toda-type integrable systems such as the Toda lattice, the generalized relativistic Toda lattice, the R_{I} chain and others. We then clarify a relationship among the $R_{I I}$ chain and those Toda-type integrable systems.

We introduce the independent variable z as follows:

$$
\begin{align*}
c_{k, l}^{t}(s+1) & =\frac{\mathrm{d}}{\mathrm{~d} z} c_{k, l}^{t}(s)=c_{k-1, l}^{t}(s)+\alpha_{k+l} c_{k, l}^{t}(s)=c_{k, l-1}^{t}(s)+\beta_{l} c_{k, l}^{t}(s) \\
& =c_{k-1, l}^{t+1}(s)+\lambda_{t} c_{k, l}^{t}(s) \tag{32}
\end{align*}
$$

The variable z can be regarded as a continuous variable corresponds to the discrete variable k or l. We first propose Bäcklund transformations for the $R_{I I}$ chain in terms of bilinear equations.

Proposition 3. The τ functions (17) satisfy the bilinear equations

$$
\begin{align*}
& \tau_{n}^{k, l, t} \tau_{n}^{k+1, l+1, t}-\tau_{n}^{k, l+1, t} \tau_{n}^{k+1, l, t}=\tau_{n-1}^{k+1, l+1, t} \tau_{n+1}^{k, l, t}, \tag{33a}\\
& \tau_{n}^{k+1, l, t} \tau_{n+1}^{k-1, l, t}+\left(\alpha_{k+t+n}-\beta_{l+n}\right) \tau_{n}^{k, l, t} \tau_{n+1}^{k, l, t}=\tau_{n}^{k, l+1, t} \tau_{n+1}^{k, l-1, t}, \tag{33b}\\
& \tau_{n}^{k, l+1, t} \tau_{n}^{k, l-1, t}-\tau_{n-1}^{k+1, t, t} \tau_{n+1}^{k-1, l, t}=\tau_{n}^{k, l, t} \sigma_{n}^{k, l, t}, \tag{33c}\\
& \tau_{n}^{k+1, l+1, t} \sigma_{n+1}^{k, l, t}-\sigma_{n}^{k+1, l+1, t} \tau_{n+1}^{k, l, t}=\left(\beta_{l+n+1}-\beta_{l+n}\right) \tau_{n}^{k+1, l, t} \tau_{n+1}^{k, l+1, t}, \tag{33d}\\
& D_{z} \tau_{n}^{k, l, t} \cdot \tau_{n}^{k, l+1, t}=\tau_{n-1}^{k+1, l+1, t} \tau_{n+1}^{k-1, l, t} \tag{33e}\\
& \left(D_{z}+\beta_{l+n}\right) \tau_{n}^{k+1, l, t} \cdot \tau_{n+1}^{k, l, t}=-\tau_{n}^{k+1, l+1, t} \tau_{n+1}^{k, l-1, t}, \tag{33f}\\
& D_{z}^{2} \tau_{n}^{k, l, t} \cdot \tau_{n}^{k, l, t}=2 \tau_{n-1}^{k, l, t} \tau_{n+1}^{k, l, t} \tag{33g}
\end{align*}
$$

where D_{z} is the bilinear differential operator defined by

$$
\begin{equation*}
D_{z}^{n} f(z) \cdot g(z)=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{\prime n}} f\left(z+z^{\prime}\right) g\left(z-z^{\prime}\right)\right|_{z^{\prime}=0} \tag{34}
\end{equation*}
$$

Many significant Toda-type integrable systems are derived from a part of the bilinear equations (19) and (33) satisfied with the τ functions (17). Thus the rest of the bilinear equations are the Bäcklund transformations for those integrable systems. In what follows we list derived nonlinear equations and its Bäcklund transformations:
(i) Toda lattice

The bilinear equation (33g) is transformed to the Toda lattice

$$
\begin{align*}
\frac{\mathrm{d} a_{n}}{\mathrm{~d} z} & =a_{n}\left(b_{n}-b_{n-1}\right), \tag{35a}\\
\frac{\mathrm{d} b_{n}}{\mathrm{~d} z} & =a_{n+1}-a_{n} \tag{35b}
\end{align*}
$$

through the dependent variable transformations

$$
\begin{equation*}
a_{n}=\frac{\tau_{n-1}^{k, l, t} \tau_{n+1}^{k, l, t}}{\left(\tau_{n}^{k, l, t}\right)^{2}} \tag{36a}
\end{equation*}
$$

$$
\begin{equation*}
b_{n}=\frac{\mathrm{d} \log \left(\tau_{n+1}^{k, l, t} / \tau_{n}^{k, l, t}\right)}{\mathrm{d} z} \tag{36b}
\end{equation*}
$$

The bilinear equations (19) and (33a)-(33f) are the Bäcklund transformations for the Toda lattice. This system has no arbitrary parameter.
(ii) Discrete Toda lattice

The bilinear equations (33c) and (33d) are transformed to the discrete Toda lattice

$$
\begin{align*}
& A_{n}^{l-1}+B_{n}^{l-1}+\beta_{l-1}=A_{n}^{l}+B_{n+1}^{l}+\beta_{l}, \tag{37a}\\
& A_{n-1}^{l-1} B_{n}^{l-1}=A_{n}^{l} B_{n}^{l} \tag{37b}
\end{align*}
$$

through the dependent variable transformation

$$
\begin{align*}
& A_{n}^{l}=\frac{\tau_{n}^{k-n+1, l-n+1, t} \tau_{n+1}^{k-n, l-n-1, t}}{\tau_{n}^{k-n+1, l-n, t} \tau_{n+1}^{k-n, l-n, t}}, \tag{38a}\\
& B_{n}^{l}=-\frac{\tau_{n-1}^{k-n+2, l-n+1, t} \tau_{n+1}^{k-n, l-n, t}}{\tau_{n}^{k-n+1, l-n+1, t} \tau_{n}^{k-n+1, l-n, t}} . \tag{38b}
\end{align*}
$$

It is well known that the continuous and discrete Toda lattice are induced by spectral transformations for orthogonal polynomials. The bilinear equations (19) and (33a), (33b), (33e)-(33g) are the Bäcklund transformations for the discrete Toda lattice. This system has one arbitrary parameter β_{l}.
(iii) Generalized relativistic Toda lattice

Through the dependent variable transformations

$$
\begin{align*}
& a_{n}=-\frac{\tau_{n-1}^{k-n+2, l-1, t} \tau_{n+1}^{k-n, l, t}}{\tau_{n}^{k-n+1, l, t} \tau_{n}^{k-n+1, l-1, t}}, \tag{39a}\\
& b_{n}=\frac{\tau_{n}^{k-n+1, l-1, t} \sigma_{n+1}^{k-n, l, t}}{\tau_{n}^{k-n+1, l, t} \tau_{n+1}^{k-n, l-1, t}+\beta_{l+n},} \tag{39b}
\end{align*}
$$

the bilinear equations (33c)-(33f) are transformed to

$$
\begin{align*}
& \frac{\mathrm{d} a_{n}}{\mathrm{~d} z}=a_{n}\left(a_{n-1}-a_{n+1}+b_{n}-b_{n-1}\right), \tag{3a}\\
& \frac{\mathrm{d} b_{n}}{\mathrm{~d} z}=\beta_{l+n-1} a_{n+1}-\beta_{l+n} a_{n}+b_{n}\left(a_{n}-a_{n+1}\right), \tag{3b}
\end{align*}
$$

which is the non-autonomous generalization of the relativistic Toda lattice. The generalized relativistic Toda lattice was derived by Vinet and Zhedanov [14] in the study of a spectral transformation for the R_{I} rational functions. The bilinear equations (19) and (33a), (33b), (33g) are the Bäcklund transformations for the generalized relativistic Toda lattice. This system has one arbitrary parameter β_{l+n} and is reduced to the ordinary relativistic Toda lattice $[10,9]$ by specializing β_{l+n} to a constant.
(iv) R_{I} chain

The bilinear equations (33a)-(33d) are transformed to the R_{I} chain,

$$
\begin{equation*}
\frac{A_{n-1}^{l-1} C_{n}^{l-1}-1}{A_{n}^{l-1}}=\frac{A_{n}^{l} C_{n+1}^{l}-1}{A_{n}^{l}} \tag{4a}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\alpha_{k+t+n} A_{n-1}^{l-1} C_{n}^{l-1}-B_{n}^{l-1}-\beta_{l-1}}{A_{n}^{l-1}}=\frac{\alpha_{k+t+n+1} A_{n}^{l} C_{n+1}^{l}-B_{n}^{l}-\beta_{l}}{A_{n}^{l}} \tag{4b}\\
& \frac{B_{n-1}^{l-1} C_{n}^{l-1}}{A_{n}^{l-1}}=\frac{B_{n}^{l} C_{n}^{l}}{A_{n}^{l}} \tag{4c}
\end{align*}
$$

through the dependent variable transformations

$$
\begin{align*}
& A_{n}^{l}=-\frac{\tau_{n}^{k-n+2, l-1, t} \tau_{n+1}^{k-n, l, t}}{\tau_{n}^{k-n+1, l-1, t} \tau_{n+1}^{k+n+1, l, t}}, \tag{5a}\\
& B_{n}^{l}=\frac{\tau_{n}^{k-n+1, l, t} \tau_{n+1}^{k-n+1, l-1, t}}{\tau_{n}^{k-n+1, l-1, t} \tau_{n+1}^{k-n+1, l, t}}, \tag{5b}\\
& C_{n}^{l}=-\frac{\tau_{n-1}^{k-n+2, l-1, t} \tau_{n+1}^{k-n, l, t}}{\tau_{n}^{k-n+1, l, t} \tau_{n}^{k-n+1, l-1, t}} . \tag{5c}
\end{align*}
$$

The R_{I} chain was also derived through the spectral transformation for the R_{I} rational functions. A determinant solution for the system was discussed in [7]. The bilinear equations (19) and (33e)-(33g) are the Bäcklund transformations for the R_{I} chain. This system has two arbitrary parameters α_{k+t+n} and β_{l} and is reduced to the discrete relativistic Toda lattice $[13,5]$ by specializing the arbitrary parameter α_{k+t+n} to a constant.
(v) $R_{I I}$ chain

The bilinear equations (19) are transformed to the $R_{I I}$ chain,

$$
\begin{align*}
& \frac{B_{n}^{t+1} C_{n}^{t+1}+A_{n-1}^{t+1} D_{n}^{t+1}-1}{A_{n}^{t+1} C_{n}^{t+1}}=\frac{B_{n}^{t} C_{n}^{t}+A_{n}^{t} D_{n+1}^{t}-1}{A_{n}^{t} C_{n+1}^{t}} \tag{6a}\\
& \frac{\alpha_{k+t+n+2} B_{n}^{t+1} C_{n}^{t+1}+\beta_{l+n-1} A_{n-1}^{t+1} D_{n}^{t+1}-\lambda_{t+1}}{A_{n}^{t+1} C_{n}^{t+1}} \tag{6b}\\
& =\frac{\alpha_{k+t+n+1} B_{n}^{t} C_{n}^{t}+\beta_{l+n} A_{n}^{t} D_{n+1}^{t}-\lambda_{t}}{A_{n}^{t} C_{n+1}^{t}} \tag{6c}\\
& \frac{B_{n-1}^{t+1} D_{n}^{t+1}}{A_{n}^{t+1} C_{n}^{t+1}}=\frac{B_{n}^{t} D_{n}^{t}}{A_{n}^{t} C_{n+1}^{t}} \tag{6d}
\end{align*}
$$

through the dependent variable transformations

$$
\begin{align*}
A_{n}^{k, l, t} & =\alpha_{k+t+n+1}-\lambda_{t} \tag{7a}\\
B_{n}^{k, l, t} & =\frac{\tau_{n}^{k, l, t} \tau_{n+1}^{k, l, t+1}}{\tau_{n}^{k, l, t+1} \tau_{n+1}^{k, l, t}}, \tag{7b}\\
C_{n}^{k, l, t} & =\frac{\tau_{n}^{k, l, t+1} \tau_{n}^{k+1, l-1, t}}{\tau_{n}^{k, l, t} \tau_{n}^{k+1, l-1, t+1}}, \tag{7c}\\
D_{n}^{k, l, t} & =\left(\alpha_{k+t+n+1}-\lambda_{t}\right) \frac{\tau_{n-1}^{k, l, t+1} \tau_{n+1}^{k+1, l-1, t}}{\tau_{n}^{k, l, t} \tau_{n}^{k+1, l-1, t+1}} \tag{7d}
\end{align*}
$$

The bilinear equations (33) are the Bäcklund transformations for the $R_{I I}$ chain. This system has three arbitrary parameters: $\alpha_{k+t+n}, \beta_{l+n}$ and λ_{t}.

5. Concluding remarks

In this paper, we have derived bilinear equations of the $R_{I I}$ chain and shown that a particular solution on a semi-infinite lattice is given in terms of Casorati-type determinants. We have also given Bäcklund transformations for the $R_{I I}$ chain in terms of the bilinear equation and clarified a relationship among the $R_{I I}$ chain and non-autonomous Toda-type integrable systems induced by the Bäcklund transformations.

The τ functions in the particular solution which we constructed depend on the variables n, k, l and t. Among them, n and t denote the independent variables of the $R_{I I}$ chain. The variables k and l which do not appear in the equations describe the Bäcklund transformations of the $R_{I I}$ chain. The three non-autonomous parameters of the $R_{I I}$ chain reflect such a structure of the system. As shown in section 4, the Bäcklund transformations induce many significant non-autonomous Toda-type integrable systems. The τ functions of the $R_{I I}$ chain give us a unified approach to these non-autonomous Toda-type integrable systems including the $R_{I I}$ chain.

We have considered a solution for the $R_{I I}$ chain on a semi-infinite lattice in this paper. Other particular solutions on various types of lattices such as an infinite lattice and a periodic lattice are a future subject to be studied.

Acknowledgments

The authors are grateful to Professor Yoshimasa Nakamura and Professor Alexei Zhedanov for many fruitful discussions and helpful advice. One of the authors (AM) thanks Professor Reinout Quispel for hospitality during his stay at La Trobe University. This paper is supported in part by Grant-in-Aid for Scientific Research (nos 15005102 and 15540119) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] Hirota R 1977 Nonlinear partial difference equations: II. Discrete-time Toda equation J. Phys. Soc. Japan 43 2074-8
[2] Hirota R 1987 Discrete two-dimensional Toda molecule equation J. Phys. Soc. Japan 56 4285-8
[3] Ismail M E H and Masson D R 1995 Generalized orthogonality and continued fractions J. Approx. Theory 83 1-40
[4] Kharchev S, Mironov A and Zhedanov A 1997 Faces of relativistic Toda chain Int. J. Mod. Phys. A 12 2675-724
[5] Maruno K, Kajiwara K and Oikawa M 1998 Casorati determinant solution for the discrete-time relativistic Toda lattice equation Phys. Lett. A 241 335-43
[6] Minesaki Y and Nakamura Y 2001 The discrete relativistic Toda molecule equation and a Padé approximation algorithm Numer. Algorithms 27 219-35
[7] Mukaihira A and Tsujimoto S 2004 Determinant structure of R_{I} type discrete integrable system J. Phys. A: Math. Gen. 37 4557-65
[8] Ohta Y, Hirota R, Tsujimoto S and Imai T 1993 Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy J. Phys. Soc. Japan 62 1872-86
[9] Ohta Y, Kajiwara K, Matsukidaira J and Satsuma J 1993 Casorati determinant solution for the relativistic Toda lattice equation J. Math. Phys. 34 5190-204
[10] Ruijsenaars S N M 1990 Relativistic Toda systems Commun. Math. Phys. 133 217-47
[11] Spiridonov V and Zhedanov A 2000 Spectral transformation chains and some new biorthogonal rational functions Commun. Math. Phys. 210 49-83
[12] Spiridonov V and Zhedanov A 2003 To the theory of biorthogonal rational functions RIMS Kokyuroku 1302 172-92
[13] Suris Yu B 1996 A discrete-time relativistic Toda lattice J. Phys. A: Math. Gen. 29 451-65
[14] Vinet L and Zhedanov A 1998 An integrable chain and bi-orthogonal polynomials Lett. Math. Phys. 46 233-45
[15] Zhedanov A 1999 Biorthogonal rational functions and generalized eigenvalue problem J. Approx. Theory 101 303-29

